Analytic model for a frictional shallow-water undular bore

نویسندگان

  • G. A. El
  • R. H. J. Grimshaw
  • A. M. Kamchatnov
چکیده

We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by friction. This is derived in Riemann variables using a modified finite-gap integration technique for the AKNS scheme. The Whitham system is then reduced to a simple first-order differential equation which is integrated numerically to obtain an asymptotic profile of the undular bore, with the local oscillatory structure described by the periodic solution of the unperturbed Kaup-Boussinesq system. This solution of the Whitham equations is shown to be consistent with certain jump conditions following directly from conservation laws for the original system. A comparison is made with the recently studied dissipationless case for the same system, where the undular bore is unsteady. Undular bores are nonlinear wave-like structures, which are generated in the breaking profiles of large-scale nonlinear waves propagating in dispersve media. A general theory, based on the Whitham modulation equations, has been previously developed for dissipationless, unsteady, undular bores on the basis of completely integrable models such as the Korteweg-de Vries equation, nonlinear Schrödinger equation etc. The introduction of physically important small dissipation in the system dramatically changes its properties, allowing in some cases for the presence of steady solutions. The most explored model

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wave Breaking and the Generation of Undular Bores in an Integrable Shallow Water System

The generation of an undular bore in the vicinity of a wave-breaking point is considered for the integrable Kaup–Boussinesq (KB) shallow water system. In the framework of the Whitham modulation theory, an analytic solution of the Gurevich–Pitaevskii type of problem for a generic “cubic” breaking regime is obtained using a generalized hodograph transform, and a further reduction to a linear Eule...

متن کامل

Analytic model for a weakly dissipative shallow-water undular bore.

We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by viscosity. This is derived in Riemann variables using a modified finite-gap integration technique for the Ablowitz-Kaup-Newell...

متن کامل

Integrable Shallow-Water Equations and Undular Bores

On the basis of the integrable Kaup–Boussinesq version of the shallow-water equations, an analytical theory of undular bores is constructed. A complete classification for the problem of the decay of an initial discontinuity is made.

متن کامل

Ja n 20 06 Unsteady undular bores in fully nonlinear shallow - water theory

We consider unsteady undular bores for a pair of coupled equations of Boussinesq-type which contain the familiar fully nonlinear dissipationless shallow-water dynamics and the leading-order fully nonlinear dispersive terms. This system contains one horizontal space dimension and time and can be systematically derived from the full Euler equations for irrotational flows with a free surface using...

متن کامل

Transcritical shallow-water flow past topography: finite-amplitude theory

We consider shallow-water flow past a broad bottom ridge, localized in the flow direction, using the framework of the forced Su–Gardner (SG) system of equations, with a primary focus on the transcritical regime when the Froude number of the oncoming flow is close to unity. These equations are an asymptotic long-wave approximation of the full Euler system, obtained without a simultaneous expansi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004